概要説明書

概要説明書(そ	·の1)		※登録No.	23D1013				
技術名称	 小型消化ガス発電システム			※登録年月日	2011.9.12			
12侧右柳	小空舟11カへ光	电ン	Л	※変更登録年月日	2015.4.7			
商標名等	下水汚泥消化ガ	`スの	有効利用	開発年月	平成21年8月			
分 野	☑ 土木分野		建築分野 (必ず、と	ちらかを選択してくだる	さい。)			
区分	□技術	□ 技術 □ 工法 □ 製品 □ 材料 □ その他						
	□ 安全·安心		☑ 環境					
	☑ コスト縮減・生	産性	の向上 🗌 公共工事	の品質確保・向上	□景観			
トーワード (複数選択可)	□ 伝統・歴史・戈	と化	☑ リサイクノ	L				
(後奴选扒可)	自由記入 下水	K汚泥	、消化ガス、生ゴミ、ノ	「イオガス、系統連系、	コージェネ			
	□省人化		□省力化		済性の向上			
	┃□施工精度の向	与上	□ 耐久性の向	上□安	全性の向上			
│ 開発目標 (複数選択可)	┃ □ 作業環境の向	〕上	□ 周辺環境へ	の影響抑制 🗹 地	球環境への影響抑制			
(後数迭扒円)	☑ 省資源・省工	ネルコ	ギー □品質の向上	☑ IJ+	ナイクル性向上			
	□その他()			
88 5% / L #u	□単独 [☑ 共	同研究 (□民・民	☑民・官 ☑民	·学)			
開発体制	開発会社 独立	2行政	法人 土木研究所、	国立大学法人 長岡技	支術科学大学			
公的支援助成等	等(「Made in 新	潟 新	「商品調達制度」)の関	連の有無				
該当の有無	☑ 無し 有り [I	□ п □ ш		VI			
	会社名		株式会社 大原鉄工所					
	担当部署		営業本部第1営業部営業支援課					
	担当者		大塚 朋貴					
	住 所		長岡市城岡2-8-1					
問合せ先	Tel		0258-24-2351					
	Fax		0258-24-8201					
	E-mail		tomoki.ohtsuka@oharacorp.co.jp					
	ホームページURL		http://www.oharacorp.co.jp/					
新技術の概要の	アブストラクト)※	検索	結果に表示する技術の	D概要です(全角127文	字以内)			
本技術は下水流	 汚泥の処理過程で	で発生	する消化ガスや生ゴミ	メタン発酵施設からの	バイオガスを燃料と			
			として開発を行った小	型・低コストなガスエン	ジン発電システムで			
す。施設の使用	引電力やCO₂排出	量の	削減が見込まれます。 					
新技術の概要								
	可をする技術か?	7 J A		カセクエ燃料ギッナ ぬ	お切しして変雨ナ なこ			
月16カス(ハイ. 技術。	消化ガス(バイオガス)と呼ばれるメタンを主成分とした生物由来の可燃性ガスを燃料として発電を行う は紙							
12 PM 。 出力別にBG30A型【25kW(50Hz)/30kW(60Hz)】及びBG60A型【50kW(50Hz)/60kW(60Hz)】の2機種を								
ラインナップ。								
	ような技術で対応し							
			に海外製のガスエンジ が高いことから中小規					
か入空でのつ す であった。	* ~ ^ / / / / / / / / /	・ヘレバ	い向いてこかり出り況が	夫い心政 いみ休昇性の	・ロ1/ソ 守八川四無			
	どこに適用できるス	かっ						
下水処理場や			おける消化ガス(バイ	オガス)発電システムと	として適用する事が出			
来る。	来る。							

概要説明書(その2)

技術名称 小型消化ガス発電システム ※登録No. 23D1013

新技術のアピールポイント(課題解決への有効性)

- ・小型、低価格、低メンテナンスコスト
- •高発電効率

新規性及び期待される効果

- ①どこに新規性があるのか?(従来技術と比較して何を改善したのか?)
- ・小型の市販ディーゼルエンジン発電機をベースとしており、低価格・低メンテナンスコストである。
- ②期待される効果は?(新技術活用のメリットは?)
- ・電力コスト削減効果
- ·CO₂排出量削減効果
- ・中小規模の施設へ導入が容易である。

適用条件

①自然条件

気温:-5~35℃、相対湿度:85%以下

②現場条件

全てのバイオガス発生施設

③技術提供可能地域

制限無し

4)関係法令等

電気事業法、消防法、労働安全衛生法、系統連系規定

適用範囲

①適用可能な範囲

バイオガス中のメタン濃度:55~65%

②特に効果の高い適用範囲

バイオガス発生量:350Nm³/日(50Hz)、450Nm³/日(60Hz)以上

- ③適用できない範囲
- ①以外の範囲
- ④適用にあたり、関係する基準及びその引用元

内燃機関駆動常用自家発電装置技術基準(日本内燃力発電技術協会)

留意事項

- ①設計時
- ・ガス量の変動を見込んだ最適設置台数の検討と台数制御方法
- ・熱回収装置を設置した場合の温水の利用方法
- ②施工時
- ・ガス配管工事時のバイオガスの漏洩に留意する。
- ③維持管理時
- ・ガス発電機のエンジンオイル管理に留意する。
- 4その他

基準数量: 1 あたり

概要説明書(その3)

「											
技術名称	小型氵	消化ガス発電システム								登録No.	23D1013
舌用の効果											
比較する従来技術 300kWクラスバイオガス発電システム											
項目					活用(り効果				比	較の根拠
経済性		☑ 向上	(91.8 %)		程度	□ 低下	(%)	機器費(1	式)の比較
工 程		□ 短縮	(%)	マ 同	程度	□増加	(%)		
品 質		□ 向上			同	程度	□ 低下				
安全性		□ 向上				程度	□ 低下				
施工性		□ 向上				程度	□ 低下				
周辺環境への影	□ 向上				程度	□ 低下					
活用の効果の根拠											
											1
基準数量 1						単位			式		
				新技術(A)	従:	来技術(B)		変化値	A/B(%)	

1 - 7 - 7		• •		
	新技術(A)	従来技術(B)	変化値A/B(%)	
経済性	16800000円	205300000円	8.20%	
工程	100日	100日	100	

●新技術の内訳

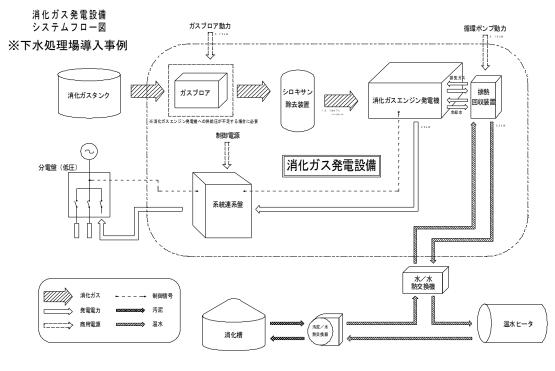
基準数量: 1 あたり 単価 金額 項目 仕 様 数量 単位 摘 要 (円) (円) 基 見積り 消化ガス発電機 25kW(50Hz), 200V ¥8,500,000 ¥8,500,000 1 シロキサン除去装置 活性炭吸着方式 1 基 ¥1,000,000 ¥1,000,000 系統連系盤 ¥3,600,000 ¥3,600,000 面 同期投入器方式、200V 1 熱回収装置 1 基 $65\sim70^{\circ}\text{C}$, 100L/min¥2,000,000 ¥2,000,000 " ガスブースタ-0.75kW、吐出圧3kPa 1 基 ¥1,700,000 ¥1,700,000 "

●従来技術の内訳

項目	仕様	数量	単位	単価 (円)	金額 (円)	摘要
バイオガス発電機	300kW、200V	1	基	¥117,000,000	¥117,000,000	見積り
前処理設備		1	式	¥13,000,000	¥13,000,000	<i>II</i>
系統連系盤		1	式	¥64,000,000	¥64,000,000	<i>''</i>
熱回収設備		1	式	¥6,000,000	¥6,000,000	"
ガス供給設備		1	式	¥5,300,000	¥5,300,000	"

概要説明書(その4)

技術名称 小	丶型消化ガス 多	発電システム			※登録No.	23D1013			
施工単価	▽	歩掛りなし	□ 歩掛りあり	リ(□ 標準・	□協会・	□ 自社)			
※発電機設置	台数、現場環	境等により都	度見積り						
施工方法									
基礎工		機器設置工	事 —— 温	ス配管工事 水配管工事 気配線工事	→	運転			
残された課題と今	後の開発計画	画							
①課題 各オプション補器	類のコンパク	ト化及び低騒 [・]	音化						
②計画									
エンジン冷却用ラジエータ及び熱交換装置とエンジン本体のセパレートパッケージ方式による低騒音化									
施工実績	V	あり 🔲	なし						
新潟県の公共事	業	3件							
他の公共機関		0件							
民間等	民間等 13件								
特許·実用新案	特許・実用新案								
特 許	□あり	□出願中	□ 出願予	・定 ☑ なし					
実用新案	□あり	□出願中	□出願予	定 🛭 なし					
	証明機関	(財)日本	下水道新技術機構						
	制度名	建設	技術審査証明						
他の機関による評価・証明	番号	審査	証明第1402号						
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	評価等年月	日 2	015年3月10日						
	証明等範囲	出	力、効率、騒音値						


技術名称 小型消化ガス発電システム

※登録No.

23D1013

概要図、写真等

概要説明書(その6)

技征	桁名称 小型河	肖化ガス発電シ	ステム	※登録No. 23D1013					
	実績一覧								
区分	発注者	地域機関名	施工時期	工 事 名					
	新潟県	流域下水道 事務所	平成25年1月~ 平成26年3月	堀之内処理場 消化ガス発電設備工事					
	新潟県	流域下水道 事務所	平成26年7月~ 平成27年3月	新津処理場 消化ガス発電設備工事					
	新潟県	流域下水道 事務所	平成26年7月~ 平成27年3月	新潟処理場 消化ガス発電設備工事					
県内に	K社	_	平成24年10月	BG30 ×1台					
おけ									
る施工実									
実 績									
	O社	-	平成24年10月	BG30 ×1台					
	C社	-	平成25年3月	BG30 ×1台					
_	C社	-	平成25年11月	BG90 ×1台					
県外に	Y社	-	平成25年5月	BG30 ×1台					
おけ	E社	-	平成25年11月	BG30 ×1台					
る 施 エ	M社	-	平成26年2月	BG60 ×5台					
工実績	C社	-	平成26年10月	BG30 ×1台					
	C社	-	平成26年5月	BG30 ×1台					
	C社	-	平成26年7月	BG90 ×1台					
	O社	-	平成26年8月	BG60 ×1台					

概要説明書(その7)

	析名称 小型:	※登録No.	23D1013								
	新技術提供企業										
区分	企業名	担当部署	担当者	住所	TEL	FAX	E—mail				
代表	㈱大原鉄工 所	営業本部 第1営業部 営業支援課	大塚 朋貴	長岡市城岡2− 8−1	0258-24- 2351	0258-24- 8201	tomoki.ohtsu ka@oharacor p.co.jp				
代表以											
外外											